Absence of branches from xylan in Arabidopsis gux mutants reveals potential for simplification of lignocellulosic biomass.

نویسندگان

  • Jennifer C Mortimer
  • Godfrey P Miles
  • David M Brown
  • Zhinong Zhang
  • Marcelo P Segura
  • Thilo Weimar
  • Xiaolan Yu
  • Keith A Seffen
  • Elaine Stephens
  • Simon R Turner
  • Paul Dupree
چکیده

As one of the most abundant polysaccharides on Earth, xylan will provide more than a third of the sugars for lignocellulosic biofuel production when using grass or hardwood feedstocks. Xylan is characterized by a linear β(1,4)-linked backbone of xylosyl residues substituted by glucuronic acid, 4-O-methylglucuronic acid or arabinose, depending on plant species and cell types. The biological role of these decorations is unclear, but they have a major influence on the properties of the polysaccharide. Despite the recent isolation of several mutants with reduced backbone, the mechanisms of xylan synthesis and substitution are unclear. We identified two Golgi-localized putative glycosyltransferases, GlucUronic acid substitution of Xylan (GUX)-1 and GUX2 that are required for the addition of both glucuronic acid and 4-O-methylglucuronic acid branches to xylan in Arabidopsis stem cell walls. The gux1 gux2 double mutants show loss of xylan glucuronyltransferase activity and lack almost all detectable xylan substitution. Unexpectedly, they show no change in xylan backbone quantity, indicating that backbone synthesis and substitution can be uncoupled. Although the stems are weakened, the xylem vessels are not collapsed, and the plants grow to normal size. The xylan in these plants shows improved extractability from the cell wall, is composed of a single monosaccharide, and requires fewer enzymes for complete hydrolysis. These findings have implications for our understanding of the synthesis and function of xylan in plants. The results also demonstrate the potential for manipulating and simplifying the structure of xylan to improve the properties of lignocellulose for bioenergy and other uses.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of glucuronic acid from xylan is a strategy to improve the conversion of plant biomass to sugars for bioenergy

BACKGROUND Plant lignocellulosic biomass can be a source of fermentable sugars for the production of second generation biofuels and biochemicals. The recalcitrance of this plant material is one of the major obstacles in its conversion into sugars. Biomass is primarily composed of secondary cell walls, which is made of cellulose, hemicelluloses and lignin. Xylan, a hemicellulose, binds to the ce...

متن کامل

Engineering of plants with improved properties as biofuels feedstocks by vessel-specific complementation of xylan biosynthesis mutants

UNLABELLED BACKGROUND Cost-efficient generation of second-generation biofuels requires plant biomass that can easily be degraded into sugars and further fermented into fuels. However, lignocellulosic biomass is inherently recalcitrant toward deconstruction technologies due to the abundant lignin and cross-linked hemicelluloses. Furthermore, lignocellulosic biomass has a high content of pento...

متن کامل

Comparison of five xylan synthesis mutants reveals new insight into the mechanisms of xylan synthesis.

Previous studies using co-expression analysis have identified a large number of genes likely to be involved in secondary cell-wall formation. However, the function of very few of these genes is known. We have studied the cell-wall phenotype of irx7, irx8 and irx9, three previously described irregular xylem (irx) mutants, and irx14 and parvus-3, which we now show also to be secondary cell-wall m...

متن کامل

The Arabidopsis DUF231 domain-containing protein ESK1 mediates 2-O- and 3-O-acetylation of xylosyl residues in xylan.

Xylan, a major polysaccharide in plant lignocellulosic biomass, is acetylated at O-2 and/or O-3 and its acetylation impedes the use of biomass for biofuel production. Currently, it is not known what genes encode acetyltransferases that are responsible for xylan O-acetylation. In this report, we demonstrate an essential role for the Arabidopsis gene ESKIMO1 (ESK1) in xylan O-acetylation during s...

متن کامل

Characterization of hemicellulase and cellulase from the extremely thermophilic bacterium Caldicellulosiruptor owensensis and their potential application for bioconversion of lignocellulosic biomass without pretreatment

BACKGROUND Pretreatment is currently the common approach for improving the efficiency of enzymatic hydrolysis on lignocellulose. However, the pretreatment process is expensive and will produce inhibitors such as furan derivatives and phenol derivatives. If the lignocellulosic biomass can efficiently be saccharified by enzymolysis without pretreatment, the bioconversion process would be simplifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 107 40  شماره 

صفحات  -

تاریخ انتشار 2010